
Repeater

Repeater is a rich control with basic functionality of repeating a set of controls multiple times
(just like for loop in traditional JSPs). The repeater is one-direction control; that is it only
transfers data from the controller to the view (rendering). The repeater doesn't not bind post back
data to the supplied list as JspxBean is doing.

The developer can define a variable to be used within the loop to bind child control attributes to
the objects in the repeater list. Following is an example of the repeater:

 <repeater id="customerRepeater" itemsList="customerList" var="c">

 <div>

 <p><label>${c.id}</label></p>

 <p><label>${c.name}</label></p>

</div>

 </repeater>

If the customerList in the controller contains 2 customers, the following will be rendered:

 <div>

 <p><label>1</label></p>

 <p><label>customer 1</label></p>

</div>

<div>

 <p><label>2</label></p>

 <p><label>customer 2</label></p>

</div>

As we can see it repeated all children two times and evaluated each expression using the
customer object in the corresponding loop cycle.

Repeater uses the same expression evaluation engine as JspxBean that expect the following
format:

 ${variableName.propertyName}

Complex binding and super-class binding is also possible in the repeater context (see JspxBean
complex binding and super-class binding for more info). The repeater can contain any control as
a child control including another repeater control, which gives the ability to simulate nested
loops as the following example.

 <repeater id="customerRepeater" itemsList="customerList" var="c">

 <p><label>${c.name}</label></p>

<repeater id="rep2" itemsList="c.creditCardList" var="user">

 <p><label>${user.cardName}</label></p>

</repeater>

 </repeater>

Attributes

Name Description

itemList The name of the list the repeater will loop against. The
framework will try to get the list from the controller or from the
parent repeater (see list binding below)

var The variable name to be used in the binding of children

changeId True or false (default is true), Boolean indicate if the framework
should add the loop counter to the id of child controls to
distinguish them from each other.

List Binding

As mentioned above the itemList attribute define the list name. The framework uses this name to
get the list from the controller by invoking the public getter method of the list name (i.e. if the
itemList=customerList, the framework will invoke getCustomerList in the controller).

In nested repeaters (example shown above), the list could also be obtained from binding
expression pointing to the parent repeater variable. As you can see from the example above the
second repeater list is bounded to the creditCardList of the customer, which is the loop variable
of the parent repeater.

Change ids

In jspx, the control identifier is the id, so for any control that needs to be loaded in the post back,
it must have a unique ID. The repeater control provides a feature of making sure of the
uniqueness of the child control ids if required. This is done by changing the IDs of child controls
during the rendering phase by adding the loop counter to the end of the original control. This
behavior is controllable by the changeId attribute, if the changeId attribute is set to true (default)
the repeater control will change the ids of all child controls unless the child control override this
by setting its local changeId attribute to false. If the changeId attribute of the repeater is set to
false, the repeater control will be not change the IDs of its child controls.

 <repeater id="customerRepeater" itemsList="customerList" var="c">

 <p><label id="A">${c.id}</label></p>

 <p><label id="B" changeId="false">${c.name}</label></p>

 </repeater>

Will be rendered as:

 <p><label id="A_0">1</label></p>

 <p><label id="B">customer 1</label></p>

 <p><label id="A_1">2</label></p>

 <p><label id="B">customer 2</label></p>

The above example shows a repeater with changeId attribute set to true (because the default is
true), the first label changeId is true (default) while the second label override the changeId

attribute by setting it to false. The result shows that the first label ID was changed by adding the
loop counter (A_0 and A_1) while the second label didn't (B).

